
SWEN-261
Introduction to Software 
Engineering

Department of Software Engineering
Rochester Institute of Technology

REST Basics

{ JSON } http://



What is an API?

▪ APIs (Application Program Interfaces) allow applications to communicate 
with one another
• Applications that communicate via APIs can be located on the same computer, over a 

local network, or over the internet

▪ An API is a contract between a client application and a service application
• The client application sends a request in an agreed upon format to the API of the 

service application
• The service application API sends a response back to the client in an agreed upon 

format
• Neither the client application nor the service application need to know the 

implementation details of the other

▪ APIs allow access to resources while maintaining security and control

2



APIs in Action

Consider a travel website
• Its “product” is a one-stop shop for a customer’s travel needs
• The travel company itself does not directly provide nor control 

the travel services
• It must rely on other companies for these services, needs access 

to their data, schedules, etc, and does so via APIs
 Weather – warn customers of advisories and warnings
 Airline – compare fares and schedules, book flights
 Car Rental – compare rates and availability, reserve cars
 Hotel – compare rates and availability, reserve rooms
 Credit – payments

Now consider the benefits the service provider gains by 
making an API available

• By integrating its services into the travel website, it increases the 
opportunity for sales

• With little or no extra development, it can expand its presence
 Other travel websites
 Other industries

– For example, a Car Rental company can make its services and data available to an auto 
insurance company for clients whose car has been in an accident3

Travel Website

Weather

Airline

Car Rental

Credit

Hotel

Another

Travel Website
Auto Insurance



What is REST?

▪ REpresentational State Transfer – an architectural standard for accessing and 
modifying resources

▪ A REST server provides access to resources via standard HyperText Transfer 
Protocol (HTTP) methods

▪ A REST API is stateless which means it is a client’s responsibility to maintain state 
and pass this state with each request

▪ A resource is identified by a Uniform Resource Identifier (URI), which looks very 
similar to a website URL

▪ REST APIs define a set of functions in which the developers can perform requests 
and receive responses

▪ First introduced by Roy Fielding in his 2000 doctoral dissertation entitled 
“Architectural Styles and the Design of Network-based Software Architectures”



Why REST?
▪ Maintains separation between client and server

• The same interface can be used whether the client is a user 
interface or another REST API server

▪ Provides a uniform interface to access and manage resources

▪ Scalability and Reliability
• REST APIs can be deployed to multiple servers in different 

locations
• If one server becomes unavailable, requests can be automatically 

routed to another with no loss in service (load balancing)
• As request volumes increase, additional REST API servers can be 

brought online

▪ Language and Platform Independence
• REST APIs can be written in nearly any language and clients can be 

written in a completely different language
• REST APIs can be hosted on nearly any Operating System

▪ Flexible Data Formats
• REST APIs can accept and return multiple data formats, e.g. JSON, 

XML

Client

REST API

Server

HTTP 

Request

HTTP 

Response



Resources and URIs

▪ A resource is identified by a Uniform Resource Identifier

▪ A URI looks very similar to a website address

▪ The basic format is

scheme host:port path to resource:// / ? query parameter

• Example

http www.state.edu:9150 se/faculty:// / ? id=310



JSON

▪ JavaScript Object Notation – a human readable data interchange format for defining and transmitting objects

▪ The syntax supports name-value pairs and arrays
• A name is surrounded by double quotes and separated from the value by a colon

• A value can a number, string, boolean, array, object, or null

• An array is surrounded by square brackets

▪ Curly braces wrap objects

▪ Commas separate name-value pairs and array elements

▪ Names follow the camel case convention



JSON Example: Student

{
"firstName": "Pete",
"lastName": "Jones"
"year": 2,
"address": {

"street": "50 Main St",
"city": "Rochester",
"state: "NY",
"zipCode": "14623"

},
"classes": ["SWEN-261", "MATH-181", "ENGL-150"],
"avatar": null,
"enrolled": true

}

Name Value

String

Number

Object

Array

Null

Boolean



REST HTTP Methods

▪ The most commonly used HTTP methods in REST carry out CRUD operations 
(Create, Read, Update, Delete)

• POST – Create a new resource

POST /petstore/pets/dog Create a new dog

• GET – Read access to a resource

GET /petstore/pets Get all pets

GET /petstore/pets/dog/{id} Get a specific dog

• PUT – Update or create a resource

PUT /petstore/pets/dog/{id} Update a specific dog

• DELETE – Delete a resource

DELETE /petstore/pets/dog/{id} Delete a specific dog (because it went to a loving home)

▪ When you type a URL into a browser, an HTTP GET request is sent to the 
website and the response data is used to render the page



REST Request Components

▪ A REST API request consists of four main parts:
• Method
 Required
 Identifies the operation
 Example: GET

• URI
 Required
 Identifies the resource
 May include query parameters to identify specific content or actions
 Example: http://localhost:8080/jedi/5

• Headers
 Optional, but generally used
 Provides additional information about the request or client
 Applications, e.g. Browsers, or frameworks, e.g. Spring, often add standard and their own headers to 

requests
– For the purposes of the term project, we will focus on Content-Type and custom headers

 Example: Content-Type: application/json
• Body
 Generally used for POST and PUT, but not for GET and DELETE
 Representation of one or more objects
 Example: {"id": 3, "lastName": "Skywalker", "firstName": "Anakin"}



REST Response Components

▪ A REST API response consists of three main parts:
• Status Code
 Required
 Identifies the result of the operation
 Example: 200/OK

• Headers
 Optional
 Provides additional information about the response to the client
 Example: api-status-code: 3

• Body
 Required for GET, but often used for other methods
 Representation of one or more objects
 Example: {"id": 3, "lastName": "Skywalker", "firstName": "Anakin"}

▪ Common HTTP Status Codes
• 200/OK – Request was completed successfully
• 201/Created – Resource was created successfully
• 400/Bad Request – Body of request was invalid
• 403/Forbidden – Caller does not have permissions for the requested resource
• 404/Not Found – Requested resource could not be found
• 500/Internal Server Error – Server cannot fulfill request and does not want to expose specifics 

to client
• 501/Not Implemented – Requested method is not currently supported



REST HTTP Methods - POST
▪ Creates a new resource

▪ Request
• URI specifies the resource to be created

http://localhost:8080/jedi
• Header tells the REST API the format of the Body

Content-Type: application/json
• Body is a representation of the jedi object

{
"lastName": "Skywalker",
"firstName": "Anakin“

}

Notice the "id" field is not included - The unique identifier of a resource should be created and managed by the REST API service unless a field is determined to be 
unique

▪ Response
• Common Status Codes

201 – CREATED
403 – FORBIDDEN

• Header
Application dependent

• Body is a representation of the created object
{

“id": 3,
"lastName": "Skywalker",
"firstName": "Anakin“

}



REST HTTP Methods - GET

▪ Retrieves a resource

▪ Request
• URI provides enough information identify the resource

http://localhost:8080/jedi/3
• Header

Generally not applicable
• Body

Generally not applicable

▪ Response
• Common Status Codes

200 – OK
404 – NOT FOUND

• Header
Application dependent

• Body is a representation of the object requested
{

"id": 3,
"lastName": "Skywalker",
"firstName": "Anakin"

}
If multiple objects are requested, an array would be returned



REST HTTP Methods - PUT
▪ Update a resource or create the resource if it does not exist

▪ Request
• URI provides enough information identify the resource

http://localhost:8080/jedi
• Header tells the REST API the format of the Body

Content-Type: application/json
• Body of the request contains an object with the fields to be updated

{
"id": 3,
"lastName": "Vader",
"firstName": "Darth"

}

▪ Response
• Common Status Codes

200 – OK
404 – NOT FOUND

• Header
Application dependent

• Body is a representation of the updated object
{
"id": 3,
"lastName": “Vader",
"firstName": “Darth"

}



REST HTTP Methods - DELETE

▪ Deletes a resource

▪ Request
• The URI specifies the resource to be deleted

http://localhost:8080/jedi/3

• Header
Generally not applicable

• Body
Not Applicable

▪ Response
• Common Status Codes
 200 – OK
 404 – NOT FOUND

• Header

Application dependent

• Body
Not applicable



Accessing a REST API

▪ Write a client application

▪ Use an existing tool
• Two of the most popular tools are

 cURL (client URL) – a command-line tool available by default in most operating systems including Windows, Mac, 
and Linux

 Postman – a graphical user interface for API testing (www.postman.com)



Serialization and Deserialization

▪ As we’ve seen, JSON is a human-readable text format

▪ In our REST API application, we do not want to deal with text, but rather Java objects
• From the previous HTTP examples, you can envision Jedi being a class with 3 fields:
 id – Number
 firstname – String
 lastname – String

▪ Serialization is the process of converting an application object (e.g. Java object) to text (or byte stream)

▪ Deserialization is the reverse – converting text (or byte stream) into an application object

▪ HTTP POST and PUT requests contain a JSON Object (text representation) that needs to be converted to an 
application object our REST API application code can work with

▪ Conversely, GET responses from our REST API need to be converted from an application object into a JSON 
object that can be transmitted back to the client

▪ Additionally, within a REST API service, we usually want to persist data, whether it be in a file, database, or 
other storage
• As information is typically represented in files and database as text, serialization and deserialization can be used to transform 

application objects to JSON objects and vice-versa
• The JSON objects, which are text, are then easily written to and read from a file, a database, etc

17



REST API Frameworks

▪ Nearly every language has REST frameworks available, most are open 
source, that support rapid and reliable development

▪ We will use Java and the Spring Boot framework in our term project
• Spring Boot provides the scaffolding for stand-alone, light-weight, production-grade 

REST API applications
• Includes an embedded Tomcat server that hosts your APIs and makes them available 

to clients on a network
• Routes HTTP requests to your class methods for handling
• Built-in support for serialization and deserialization
• The Spring Initializr wizard, available at start.spring.io or via VSCode extension, 

quickly builds a baseline project
 You will not need to use Spring Initializr as the starter projects are provided

• Many annotations, e.g. @RestController, are available to easily control 
configuration

• See the course resources page for more information and helpful links
18

https://www.se.rit.edu/~swen-261/resources/resources.html

