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What is an API?

▪ APIs (Application Program Interfaces) allow applications to communicate 
with one another
• Applications that communicate via APIs can be located on the same computer, over a 

local network, or over the internet

▪ An API is a contract between a client application and a service application
• The client application sends a request in an agreed upon format to the API of the 

service application
• The service application API sends a response back to the client in an agreed upon 

format
• Neither the client application nor the service application need to know the 

implementation details of the other

▪ APIs allow access to resources while maintaining security and control
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APIs in Action

Consider a travel website
• Its “product” is a one-stop shop for a customer’s travel needs
• The travel company itself does not directly provide nor control 

the travel services
• It must rely on other companies for these services, needs access 

to their data, schedules, etc, and does so via APIs
 Weather – warn customers of advisories and warnings
 Airline – compare fares and schedules, book flights
 Car Rental – compare rates and availability, reserve cars
 Hotel – compare rates and availability, reserve rooms
 Credit – payments

Now consider the benefits the service provider gains by 
making an API available

• By integrating its services into the travel website, it increases the 
opportunity for sales

• With little or no extra development, it can expand its presence
 Other travel websites
 Other industries

– For example, a Car Rental company can make its services and data available to an auto 
insurance company for clients whose car has been in an accident3
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What is REST?

▪ REpresentational State Transfer – an architectural standard for accessing and 
modifying resources

▪ A REST server provides access to resources via standard HyperText Transfer 
Protocol (HTTP) methods

▪ A REST API is stateless which means it is a client’s responsibility to maintain state 
and pass this state with each request

▪ A resource is identified by a Uniform Resource Identifier (URI), which looks very 
similar to a website URL

▪ REST APIs define a set of functions in which the developers can perform requests 
and receive responses

▪ First introduced by Roy Fielding in his 2000 doctoral dissertation entitled 
“Architectural Styles and the Design of Network-based Software Architectures”



Why REST?
▪ Maintains separation between client and server

• The same interface can be used whether the client is a user 
interface or another REST API server

▪ Provides a uniform interface to access and manage resources

▪ Scalability and Reliability
• REST APIs can be deployed to multiple servers in different 

locations
• If one server becomes unavailable, requests can be automatically 

routed to another with no loss in service (load balancing)
• As request volumes increase, additional REST API servers can be 

brought online

▪ Language and Platform Independence
• REST APIs can be written in nearly any language and clients can be 

written in a completely different language
• REST APIs can be hosted on nearly any Operating System

▪ Flexible Data Formats
• REST APIs can accept and return multiple data formats, e.g. JSON, 
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Resources and URIs

▪ A resource is identified by a Uniform Resource Identifier

▪ A URI looks very similar to a website address

▪ The basic format is

scheme host:port path to resource:// / ? query parameter

• Example

http www.state.edu:9150 se/faculty:// / ? id=310



JSON

▪ JavaScript Object Notation – a human readable data interchange format for defining and transmitting objects

▪ The syntax supports name-value pairs and arrays
• A name is surrounded by double quotes and separated from the value by a colon

• A value can a number, string, boolean, array, object, or null

• An array is surrounded by square brackets

▪ Curly braces wrap objects

▪ Commas separate name-value pairs and array elements

▪ Names follow the camel case convention



JSON Example: Student

{
"firstName": "Pete",
"lastName": "Jones"
"year": 2,
"address": {

"street": "50 Main St",
"city": "Rochester",
"state: "NY",
"zipCode": "14623"

},
"classes": ["SWEN-261", "MATH-181", "ENGL-150"],
"avatar": null,
"enrolled": true

}
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REST HTTP Methods

▪ The most commonly used HTTP methods in REST carry out CRUD operations 
(Create, Read, Update, Delete)

• POST – Create a new resource

POST /petstore/pets/dog Create a new dog

• GET – Read access to a resource

GET /petstore/pets Get all pets

GET /petstore/pets/dog/{id} Get a specific dog

• PUT – Update or create a resource

PUT /petstore/pets/dog/{id} Update a specific dog

• DELETE – Delete a resource

DELETE /petstore/pets/dog/{id} Delete a specific dog (because it went to a loving home)

▪ When you type a URL into a browser, an HTTP GET request is sent to the 
website and the response data is used to render the page



REST Request Components

▪ A REST API request consists of four main parts:
• Method
 Required
 Identifies the operation
 Example: GET

• URI
 Required
 Identifies the resource
 May include query parameters to identify specific content or actions
 Example: http://localhost:8080/jedi/5

• Headers
 Optional, but generally used
 Provides additional information about the request or client
 Applications, e.g. Browsers, or frameworks, e.g. Spring, often add standard and their own headers to 

requests
– For the purposes of the term project, we will focus on Content-Type and custom headers

 Example: Content-Type: application/json
• Body
 Generally used for POST and PUT, but not for GET and DELETE
 Representation of one or more objects
 Example: {"id": 3, "lastName": "Skywalker", "firstName": "Anakin"}



REST Response Components

▪ A REST API response consists of three main parts:
• Status Code
 Required
 Identifies the result of the operation
 Example: 200/OK

• Headers
 Optional
 Provides additional information about the response to the client
 Example: api-status-code: 3

• Body
 Required for GET, but often used for other methods
 Representation of one or more objects
 Example: {"id": 3, "lastName": "Skywalker", "firstName": "Anakin"}

▪ Common HTTP Status Codes
• 200/OK – Request was completed successfully
• 201/Created – Resource was created successfully
• 400/Bad Request – Body of request was invalid
• 403/Forbidden – Caller does not have permissions for the requested resource
• 404/Not Found – Requested resource could not be found
• 500/Internal Server Error – Server cannot fulfill request and does not want to expose specifics 

to client
• 501/Not Implemented – Requested method is not currently supported



REST HTTP Methods - POST
▪ Creates a new resource

▪ Request
• URI specifies the resource to be created

http://localhost:8080/jedi
• Header tells the REST API the format of the Body

Content-Type: application/json
• Body is a representation of the jedi object

{
"lastName": "Skywalker",
"firstName": "Anakin“

}

Notice the "id" field is not included - The unique identifier of a resource should be created and managed by the REST API service unless a field is determined to be 
unique

▪ Response
• Common Status Codes

201 – CREATED
403 – FORBIDDEN

• Header
Application dependent

• Body is a representation of the created object
{

“id": 3,
"lastName": "Skywalker",
"firstName": "Anakin“

}



REST HTTP Methods - GET

▪ Retrieves a resource

▪ Request
• URI provides enough information identify the resource

http://localhost:8080/jedi/3
• Header

Generally not applicable
• Body

Generally not applicable

▪ Response
• Common Status Codes

200 – OK
404 – NOT FOUND

• Header
Application dependent

• Body is a representation of the object requested
{

"id": 3,
"lastName": "Skywalker",
"firstName": "Anakin"

}
If multiple objects are requested, an array would be returned



REST HTTP Methods - PUT
▪ Update a resource or create the resource if it does not exist

▪ Request
• URI provides enough information identify the resource

http://localhost:8080/jedi
• Header tells the REST API the format of the Body

Content-Type: application/json
• Body of the request contains an object with the fields to be updated

{
"id": 3,
"lastName": "Vader",
"firstName": "Darth"

}

▪ Response
• Common Status Codes

200 – OK
404 – NOT FOUND

• Header
Application dependent

• Body is a representation of the updated object
{
"id": 3,
"lastName": “Vader",
"firstName": “Darth"

}



REST HTTP Methods - DELETE

▪ Deletes a resource

▪ Request
• The URI specifies the resource to be deleted

http://localhost:8080/jedi/3

• Header
Generally not applicable

• Body
Not Applicable

▪ Response
• Common Status Codes
 200 – OK
 404 – NOT FOUND

• Header

Application dependent

• Body
Not applicable



Accessing a REST API

▪ Write a client application

▪ Use an existing tool
• Two of the most popular tools are

 cURL (client URL) – a command-line tool available by default in most operating systems including Windows, Mac, 
and Linux

 Postman – a graphical user interface for API testing (www.postman.com)



Serialization and Deserialization

▪ As we’ve seen, JSON is a human-readable text format

▪ In our REST API application, we do not want to deal with text, but rather Java objects
• From the previous HTTP examples, you can envision Jedi being a class with 3 fields:
 id – Number
 firstname – String
 lastname – String

▪ Serialization is the process of converting an application object (e.g. Java object) to text (or byte stream)

▪ Deserialization is the reverse – converting text (or byte stream) into an application object

▪ HTTP POST and PUT requests contain a JSON Object (text representation) that needs to be converted to an 
application object our REST API application code can work with

▪ Conversely, GET responses from our REST API need to be converted from an application object into a JSON 
object that can be transmitted back to the client

▪ Additionally, within a REST API service, we usually want to persist data, whether it be in a file, database, or 
other storage
• As information is typically represented in files and database as text, serialization and deserialization can be used to transform 

application objects to JSON objects and vice-versa
• The JSON objects, which are text, are then easily written to and read from a file, a database, etc
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REST API Frameworks

▪ Nearly every language has REST frameworks available, most are open 
source, that support rapid and reliable development

▪ We will use Java and the Spring Boot framework in our term project
• Spring Boot provides the scaffolding for stand-alone, light-weight, production-grade 

REST API applications
• Includes an embedded Tomcat server that hosts your APIs and makes them available 

to clients on a network
• Routes HTTP requests to your class methods for handling
• Built-in support for serialization and deserialization
• The Spring Initializr wizard, available at start.spring.io or via VSCode extension, 

quickly builds a baseline project
 You will not need to use Spring Initializr as the starter projects are provided

• Many annotations, e.g. @RestController, are available to easily control 
configuration

• See the course resources page for more information and helpful links
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